A Corrosion-Resistant Amorphous/Crystalline Heterostructured Catalyst for Industrial-Level Seawater Electrolysis in Membrane Electrode Assembly Electrolyzer

The oxygen evolution reaction (OER) is integral to the production of green hydrogen via seawater electrolysis. However, it faces significant challenges, including suboptimal catalytic activity, pronounced corrosion induced by Cl− ions, and restricted operational lifetimes. In this study, a heterostructured hybrid catalyst composed of an amorphous NiFe-layered double hydroxide (LDH) and a crystalline NiMoO₄ is presented. Leveraging the synergistic coupling interactions, the NiFe-LDH/NiMoO₄ demonstrates a remarkable OER performance in seawater electrolysis, requiring a minimal overpotential of merely 339 mV to attain an industrial-level current density of 500 mA cm−2. Experimental findings reveal that the constructed NiFe-LDH/NiMoO₄ architecture significantly enhances electron transfer between the Ni and Fe sites, resulting in the formation of high-valent Ni species that are beneficial for OER catalysis. A mechanistic analysis elucidates the phenomenon whereby the integration of NiFe-LDH and NiMoO₄ mitigates Cl− ions corrosion and optimizes the adsorption of vital oxygen-containing intermediates, accelerating the kinetics of alkaline seawater OER and improving catalytic performance during the seawater electrolysis process.

qq

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

ex

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

yx

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

ph

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

广告图片

润滑集