Linking Electron Cloud Potential Wells to Achieve Ultrahigh Output Current in a Triboelectric Nanogenerator

With the development of the Internet of Things and intelligent robots, there is an increasing demand for distributed flexible sensor networks and portable power devices. As a self-powered sensor and micro/nano powering supplier, triboelectric nanogenerator (TENG) that can convert the irregular and ubiquitous mechanical energy into electrical energy demonstrates promising applications in human–machine interaction, soft robotics, wearable healthcare, etc. However, achieving ultrahigh current density and water resistance in TENGs remains challenging, mainly due to the non-utilization of the electrons in the interior of triboelectric layers. Herein, it is proposed that linking the electron cloud potential wells (ECPWs) of triboelectric materials can lead to a huge increase in the output current of TENGs. This hypothesis is verified by embedding a conductive network of reduced graphene oxide (rGO) into the triboelectric layers of ethyl cellulose (EC) and polydimethylsiloxane (PDMS). The TENG based on this model demonstrates a record-high current density of ≈3533 mA m−2 among the TENGs working in contact-separation mode. In addition, this TENG shows excellent endurance in high-humidity and even rainy environments. This work provides a novel and promising strategy for fabricating TENGs with ultrahigh output current and water resistance, largely expanding their practical applications in many fields.

相关文章

  • Lubrication Barriers Hydrogel Microspheres Improve Dynamic Tissue Repair via the Blockade of Inflammatory Communication
    [Pengcheng Xiao, Hui Yuan, Yiting Lei, luhan Bao, Fei Wang, Juan Wang, Wenguo Cui, Wei Huang]
  • Bioinspired SiC/Chitosan Impact Resistant Coatings
    [Taige Hao, Wei Huang, Nicolás Guarín-Zapata, Derek Lublin, Yu Chen, Haitao Yu, Loukham Shyamsunder, Pablo Zavattieri, David Kisailus]
  • Bioinspired SiC/Chitosan Impact Resistant Coatings
    [Taige Hao, Wei Huang, Nicolás Guarín-Zapata, Derek Lublin, Yu Chen, Haitao Yu, Loukam Shyamsunder, Pablo Zavattieri, David Kisailus]
  • qq

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    ex

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    yx

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    ph

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    广告图片

    润滑集