With the development of the Internet of Things and intelligent robots, there is an increasing demand for distributed flexible sensor networks and portable power devices. As a self-powered sensor and micro/nano powering supplier, triboelectric nanogenerator (TENG) that can convert the irregular and ubiquitous mechanical energy into electrical energy demonstrates promising applications in human–machine interaction, soft robotics, wearable healthcare, etc. However, achieving ultrahigh current density and water resistance in TENGs remains challenging, mainly due to the non-utilization of the electrons in the interior of triboelectric layers. Herein, it is proposed that linking the electron cloud potential wells (ECPWs) of triboelectric materials can lead to a huge increase in the output current of TENGs. This hypothesis is verified by embedding a conductive network of reduced graphene oxide (rGO) into the triboelectric layers of ethyl cellulose (EC) and polydimethylsiloxane (PDMS). The TENG based on this model demonstrates a record-high current density of ≈3533 mA m−2 among the TENGs working in contact-separation mode. In addition, this TENG shows excellent endurance in high-humidity and even rainy environments. This work provides a novel and promising strategy for fabricating TENGs with ultrahigh output current and water resistance, largely expanding their practical applications in many fields.
周老师: 13321314106
王老师: 17793132604
邮箱号码: lub@licp.cas.cn