氢脆会导致金属材料发生突发性失效,这在核能设施和氢能储存系统中是一个严峻挑战。
Hydrogen embrittlement causes unpredictable material failure, posing a significant challenge for nuclear facilities and hydrogen storage systems.
研究方法 Methods
该研究结合了第一性原理计算、基于ab-initio数据训练的机器学习势的分子动力学模拟,以及用于热力学平衡分析的Ising模型。
This study combines Density Functional Theory (DFT) calculations, Molecular Dynamics (MD) simulations using a machine learning (ML) potential trained on ab-initio data, and Ising models for thermodynamic equilibrium analysis.
研究亮点 Highlights
-
Characterized two distinct hydrogen-decorated core structures: the "easy core" and the "hard core" configurations.
-
Thermodynamic analysis reveals that the hydrogen-decorated "hard core" is favored across a wide range of temperatures and concentrations.
-
定量证实氢偏聚显著提升了位错运动能垒,导致螺位错被“锁住”,解释了高浓度下的氢致硬化现象。
-
Quantitatively confirmed that hydrogen segregation significantly increases energy barriers, leading to the "locking" of screw dislocations and H-induced hardening.
研究意义 Significance
该研究揭示了氢从稀薄分布(促进滑移)到偏聚分布(锁住位错)的机制转变,为理解不同环境下的氢致塑性提供了基础。
This work clarifies the transition from the dilute regime (enhanced mobility) to the segregation regime (dislocation locking), providing foundation for understanding H-induced plasticity.
图文概览 Graphical Overview
图 1 用于DFT计算的135原子和180原子位错超胞模型。
Fig. 1 Dislocation supercell models containing 135 and 180 atoms used for DFT calculations.
图 2 氢原子在易核、原子列中心及硬核位错配置下的弛豫结构。
Fig. 2 Relaxed structures of hydrogen atoms in easy, column-centered, and hard core dislocation configurations.
图 3 易核与硬核位错偏聚模型的Ising哈密顿量参数定义。
Fig. 3 Definition of Ising Hamiltonian parameters for hydrogen segregation in easy and hard core configurations.

图 4 DFT和机器学习势计算的易核与硬核结构间的自由能差
Fig. 4 Free energy difference between easy and hard core structures calculated via DFT and ML potential.
图 5 分子动力学模拟与Ising模型预测的硬核配置氢偏聚剖面对比。
Fig. 5 Comparison of hydrogen segregation profiles on the hard core configuration between MD simulations & Ising model.
作者 Authors
Thomas Leveau, Lisa Ventelon,
Mihai-Cosmin Marinica, Emmanuel Clouet
第一作者及通讯作者
First & Corresponding Author
Thomas Leveau
研究单位 Affiliations
法国原子能与可替代能源委员会 (CEA),巴黎-萨克雷大学 (Université Paris-Saclay),法国国家科学研究中心 (CNRS)。