Tetraphenylporphyrin‐based Chelating Ligand Additive as a Molecular Sieving Interfacial Barrier toward Durable Aqueous Zinc Metal Batteries

The sustained water consumption and uncontrollable dendrite growth strongly hamper the practical applications of rechargeable zinc (Zn) metal batteries (ZMBs). Herein, for the first time, we demonstrate that trace amount of chelate ligand additive can serve as a “molecular sieve-like” interfacial barrier and achieve highly efficient Zn plating/stripping. As verified by theoretical modeling and experimental investigations, the benzenesulfonic acid groups on the additive molecular not only facilitates its water solubility and selective adsorption on the Zn anode, but also effectively accelerates the de-solvation kinetics of Zn2+. Meanwhile, the central porphyrin ring on the chelate ligand effectively expels free water molecules from Zn2+ via chemical binding against hydrogen evolution, and reversibly releases the captured Zn2+ to endow a dendrite-free Zn deposition. By virtue of this non-consumable additive, high average Zn plating/stripping efficiency of 99.7% over 2100 cycles together with extended lifespan and suppressed water decomposition in the Zn||MnO2 full battery were achieved, thus opening a new avenue for developing highly durable ZMBs.

qq

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

ex

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

yx

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

ph

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

广告图片

润滑集