Tribological Characteristics of a Friction Composition of Metal-Ceramic Powders and Carbon-Containing Additives on a Polymer Binder

Abstract Research is carried out on the wear resistance and friction coefficients of a friction composition made from PC30, Al2O3, SiO2, TiO2, and Cr2O powders and an additive containing carbon fiber in combination with GE-1 graphite, using the SFP-012A phenolic powder binder material. The study of tribotechnical properties is carried out on an IM-58 inertial stand. Using a stereoscopic microscope and a scanning electron microscope with a micro-X-ray spectral attachment, the morphology of the friction surfaces of experimental samples is analyzed, and information about the elements forming the friction surface is obtained. It is established that promising additives for the friction composition are 5–6% coarse Al2O3 and SiO2 powders. They promote an increase in friction of the friction material to the recommended minimum value of 0.3. Promising additives also include carbon fiber in an amount of 25–50%, which makes it possible to maintain the wear rate of the composition at a level not exceeding 30 µm/km. By increasing the carbon fiber content to 50%, a minimum value of the friction coefficient was obtained at the initial moment of contact of the tribocoupling surfaces. In this case, the experimental curve of changes in the friction coefficient is characterized by a smooth transition to the slipping region.

相关文章

  • Effect of MoB2 Content on the Microstructure and Wear Resistance of NiCr Coatings by Laser Cladding
    [Zicong Zhang, Xudong Nie, Yuming Zhou, Hongyuan Su, Jinyong Xu, Sergi Dosta, Ga Zhang, Chao Zhang]
  • Synergistic methodology for studying the lubrication process of kinematic nodes
    [Daria Skonieczna Corresponding Author, Oleksandr Vrublevskyi Corresponding Author, Piotr Szczyglak Corresponding Author, Jerzy Napiórkowski Corresponding Author]
  • Wear and lubrication behavior of Cu-based clutch containing Cu@C particles: numerical and experimental studies
    [Yi Dong Corresponding Author, Biao Ma Corresponding Author, Cenbo Xiong Corresponding Author, Haoran Chen Corresponding Author, Qin Zhao Corresponding Author]
  • qq

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    ex

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    yx

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    ph

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    广告图片

    润滑集